广州数学大讲坛第十三期
第一百二十八讲——兰州理工大学石启宏副教授学术报告
题目:Global bounds for the nonlinear Klein-Gordon-Schrodinger system
时间:11月10号(周四)上午10:30-11:30
地点:腾讯会议(会议ID:786-577-275)
报告人:石启宏 副教授
摘要:This report is concerned with the Cauchy problem of the Klein-Gordon-Schrodinger (KGS) equations with a defocusing nonlinearity in three spatial dimensions. The global wellposedness at H^2-regularity level and the growth bounds for the corresponding Sobolev norm of the solutions are obtained by applying Koch-Tzvetkov type Strichartz estimates and modified energy, which removes the restriction of the smallness for the initial data in the previous literature and extends the earlier results for higher-order nonlinearity. In addition, we will say more about the continuous dependence.
报告人简介:
石启宏,兰州理工大学副教授,硕士生导师。研究方向为偏微分方程与数学物理,主要研究量子系统中出现的非线性偏微分方程组,在J.Differential Equations, J.Math Phys, Discrete Cont Dyn, Commun Pur Appl Anal, Z Angew Math Phys等国内外学术刊物上发表论文30余篇, 他引60余次。先后主持国家自然科学基金项目2项,甘肃省自然科学基金项目1项。